分享好友 厨具导购网站首页 频道列表
deepmind研究人员研发出了一种解决机器人控制问题的混合方案
2024-06-26 13:42    3434    中华厨具网

机器人技术的基本问题既涉及离散变量(比如控制模式或齿轮切换的选择),又涉及连续变量(比如速度设定点和控制增益)。通常来说,由于算法或控制策略并不总是适合的,因此这些问题很难解决。这就是为什么谷歌母公司alphabet的deepmind的研究人员最近提出了一种技术:连续-离散混合学习,即可以同时优化离散和连续动作,以其本来的形式处理混合问题。

来源:deepmind

在预印本服务器arxiv.org上发表的一篇论文详细介绍了他们的工作,这篇论文也在去年10月日本大阪的第三届机器人学习会议上被人接受。作者写道:“许多先进的方法都进行了优化,它们能很好处理离散的或是连续的动作空间,但是却很少有方法能同时处理。能够使用同一算法强大地处理离散和连续动作空间,使我们能够针对任何给定问题都能选择最自然的解决方案策略,而不是让算法上的便利性来决定做出哪种选择。”

团队研发的无模型算法,是指利用强化学习或者奖励实现目标的自主代理人的培训技术,通过连续和离散动作空间来解决控制问题,并通过受控和自主切换来解决混合最优控制问题。此外,这种算法通过使用“元动作”或其他类似方案来扩大动作空间(分别定义了代理人可能感知和采取的状态和动作的范围),从而为解决现有的机器人问题提供了新颖的解决方案,并使策略可以解决类似人工智能训练期间的机械磨损等挑战 。

来源:deepmind

deepmind机器人技术

研究人员在一系列模拟和现实基准测试中验证了他们的方法,包括rethink robotics公司的sawyer机器人手臂。据称,基于给定的到达、抓取和拿起魔方的任务,其中奖励是三个子任务的总和,因此他们的算法要优于无法解决任务的现有方法。

那是因为到达魔方需要代理人打开手臂的抓具,而抓取方块需要关闭抓具。作者写道:“一开始,基线将大部分概率集中在较小的动作值上,因此很难移动抓具的手指来看到任何奖励,从而解释了学习曲线上的平稳期。另一方面,这个算法能始终以全速操作抓具,因此改进了探查性,使机器人可以完全完成任务。”

在一个单独的实验中,团队将其算法设置为参数化动作空间马尔可夫决策过程(pamdp)或一个分层问题,其中,代理人首先选择离散动作,然后为该动作选择一组连续的参数集。在这种情况下,代理人的任务是操纵机器人手臂,以便将钉子插入孔中,然后根据孔的位置和运动学来计算奖励。

研究人员表示,他们的方法比精细方法和粗略方法获得了更大的回报,并且这种算法将来可以作为基础应用到更多的混合强化学习中。论文中写道:“对于专业设计师而言,事先选择合适的模式可能很困难。而我们的方法是很有用的,因为它只需要一个实验,而别的方法都需要通过消融来进行验证。”

转载:中国机器人网(原始来源:评论:0)

以上是网络信息转载,信息真实性自行斟酌。

版权/免责声明:
一、本文图片及内容来自网络,不代表本站的观点和立场,如涉及各类版权问题请联系及时删除。
二、凡注明稿件来源的内容均为转载稿或由企业用户注册发布,本网转载出于传递更多信息的目的;如转载稿涉及版权问题,请作者联系我们,同时对于用户评论等信息,本网并不意味着赞同其观点或证实其内容的真实性。
三、转载本站原创文章请注明来源:中华厨具网

免责声明:

本站所有页面所展现的企业/商品/服务内容、商标、费用、流程、详情等信息内容均由免费注册用户自行发布或由企业经营者自行提供,可能存在所发布的信息并未获得企业所有人授权、或信息不准确、不完整的情况;本网站仅为免费注册用户提供信息发布渠道,虽严格审核把关,但无法完全排除差错或疏漏,因此,本网站不对其发布信息的真实性、准确性和合法性负责。 本网站郑重声明:对网站展现内容(信息的真实性、准确性、合法性)不承担任何法律责任。

温馨提醒:中华厨具网提醒您部分企业可能不开放加盟/投资开店,请您在加盟/投资前直接与该企业核实、确认,并以企业最终确认的为准。对于您从本网站或本网站的任何有关服务所获得的资讯、内容或广告,以及您接受或信赖任何信息所产生之风险,本网站不承担任何责任,您应自行审核风险并谨防受骗。

中华厨具网对任何使用或提供本网站信息的商业活动及其风险不承担任何责任。

中华厨具网存在海量企业及店铺入驻,本网站虽严格审核把关,但无法完全排除差错或疏漏。如您发现页面有任何违法/侵权、错误信息或任何其他问题,请立即向中华厨具网举报并提供有效线索,我们将根据提供举报证据的材料及时处理或移除侵权或违法信息。