分享好友 厨具导购网站首页 频道列表
alphago 与柯洁华山论剑,人工智能一手遮天指日可待?
2025-07-30 09:04    9632    中华厨具网

如今,人工智能的劲风势不可挡,甚至在政府报告上都划为重点。回顾2016年人工智能界的顶级盛事,人机围棋大战绝对榜上有名。面对人类棋手的失利,机器人alphago 乘胜追击、再下战书,挑战围棋顶级选手柯洁的消息一夜间走进世界的聚光灯下。然而懒人族表示:机器人都玩转围棋了!做家务可比下围棋简单多了,你们怎么还没造出一款能解放人类的全能家务机器人呢?

其实,人工智能的发展还要打败很多大小怪兽。即便是战胜了人类围棋高手的alphago目前也仅具备弱人工智能水平!虽然科幻电影里被机器人接管的世界距离我们还有些遥远,但科研人员们正在努力“打怪升级”,争取让能为人类提供服务的机器人早日来到我们身边。

假如你说:“机器人,把桌上的苹果拿去洗洗,给大家吃吧!”为了听懂并服从这个命令,机器人到底要具备哪些本领呢?

首先,机器人要理解这句话的含义。这就涉及到语音识别和自然语言处理两个研究领域。语言识别,就是把机器人听到的声波转成文字。自然语言处理,就是把一句按人类习惯说的话,解析成计算机能理解的信息。这一过程并不容易——amazon近期发布的智能音箱echo,重点攻关了远距离以及有噪音情况下的语音识别这一难题,但也只能进行有限的对话,更不用说像人类一样理解对话中复杂的情境和上下文了。

假设机器人已经正确识别出这句话。接下来的难题是:什么叫“桌子”?“苹果”是什么?什么叫“洗洗”?谁是“大家”?什么叫“吃”?这些都属于人类知识库里的常识问题。 人和人的沟通大量依赖常识,而这些都是机器不具备的。这种常识的学习对机器人而言是挑战,因为这些知识既无法预测,也无法泛化,更无法预先植入。机器人必须具备某种持续的自主学习能力,才能推理出用户的命令究竟是什么意思。

自然语言处理过程中的上下文问题,个人常识的搜集、表达和存储,以及如何利用这些常识实现人机自然交流——这些都是英特尔中国研究院的小伙伴们目前正在努力研究的课题。其中最大的挑战在于发现信息之间的相关性,并在适当时机,激活最可能相关的信息,为人机交流补足上下文。相信不久后就有更会聊天的机器人来陪伴你啦!

假设机器人能正确识别出桌子和苹果,下一步就是找到苹果。这就涉及到计算机视觉难题——就是让计算机长出一双人类的眼睛,能分辨出人可以看到的景象,提取出人能提取的信息。假设机器人能够完美捕捉三维信息,接下来就是如何理解“看到”的图像。

alphago 与柯洁华山论剑,人工智能一手遮天指日可待?

人类轻松识别出来图中是“几个苹果放在桌子上”

alphago 与柯洁华山论剑,人工智能一手遮天指日可待?

对计算机来说,“几个苹果在桌子上”的画面只是很多0或1的数字流

现在需要回答:这些0或1到底代表什么?计算机用像素来代表一张图片, 每个像素都有一组数据代表该像素的颜色和光照信息,可以用下面的数学表达式来代表计算机图像识别的工作原理:

i=p(o,w)

其中i表示图像,o表示包含多个不同类别的物体集合,w表示影响因素

一张图像首先包含多个不同类别的物体集合。同一类的物体本身就存在差异,物体自身也是五颜六色。即使是同一个物体在图像中的像素值也会受到很多因素的影响,包括光照强度和方向、相对摄像机的位置和姿态、物体之间的遮挡关系、物体自身的运动、摄像机参数等。在数学分析中,从图像(i)中感知物体集合(o)就必须同时恢复这些相关参数(w)。这是一个高维度数学问题,而答案的不唯一极大地增加了计算难度。与之相比,“棋圣”alphago需要求解的未知参数仅仅是下一步棋子的坐标,参数维度大大降低。这是机器人下围棋比做家务更为简单的原因之一。

现在我们的机器人已经成功拿到了苹果,接下来它该怎样走到人的正面并送出苹果呢?“送苹果”涉及很多技术,比“找苹果”更加复杂。机器人要有房间地图,要能定位自己的坐标,还要判别静态和动态障碍物,之后才能规划运动路径,搜索所有的区域。在搜索过程中利用“眼睛”找到大家——各种姿态、各种朝向、各种运动状态的人。然后运动到每个人面前,向大家打招呼,把苹果递过去。让机器人顺利完成“找人”一直是英特尔的研究重点。目前,我们的机器人已经可以在实验环境中找到人,并识别出人的正面、背面和侧面。研究员们正在努力让机器人变得更聪明,更稳定,在帮人类“偷懒”的道路上走得更远。

苹果终于被送出去了,机器人总算松了一口气。别忙,它还有一件重要的任务——学习记忆。通过这次经历学到了什么?当然要牢记学习成果,犯过的错可不能重蹈覆辙。那么,机器人应该如何记忆呢?

alphago 与柯洁华山论剑,人工智能一手遮天指日可待?

记忆分类

记忆是人类的高级行为,记忆的内容某种程度上相当于形色各异的知识。将观察所得转换为知识还有很长的路要走,因此在机器人身上模拟人类记忆难度极大。受限于现阶段传感器的技术水平、人类行为和动机的理解局限,以及对人类大脑工作原理的未知,让机器人具备有效的记忆功能充满了挑战。我们目前正在重点探索如何为机器人构建可学习、可推理、可搜索的记忆。

机器人领域的研究任重道远,但又潜力无限,科研人员们正在上下求索。也许在未来的某一天,你我身边也会出现像电影里大白那样的智能型知心好伙伴。

转载:中国机器人网(原始来源:评论:0)

以上是网络信息转载,信息真实性自行斟酌。

版权/免责声明:
一、本文图片及内容来自网络,不代表本站的观点和立场,如涉及各类版权问题请联系及时删除。
二、凡注明稿件来源的内容均为转载稿或由企业用户注册发布,本网转载出于传递更多信息的目的;如转载稿涉及版权问题,请作者联系我们,同时对于用户评论等信息,本网并不意味着赞同其观点或证实其内容的真实性。
三、转载本站原创文章请注明来源:中华厨具网

免责声明:

本站所有页面所展现的企业/商品/服务内容、商标、费用、流程、详情等信息内容均由免费注册用户自行发布或由企业经营者自行提供,可能存在所发布的信息并未获得企业所有人授权、或信息不准确、不完整的情况;本网站仅为免费注册用户提供信息发布渠道,虽严格审核把关,但无法完全排除差错或疏漏,因此,本网站不对其发布信息的真实性、准确性和合法性负责。 本网站郑重声明:对网站展现内容(信息的真实性、准确性、合法性)不承担任何法律责任。

温馨提醒:中华厨具网提醒您部分企业可能不开放加盟/投资开店,请您在加盟/投资前直接与该企业核实、确认,并以企业最终确认的为准。对于您从本网站或本网站的任何有关服务所获得的资讯、内容或广告,以及您接受或信赖任何信息所产生之风险,本网站不承担任何责任,您应自行审核风险并谨防受骗。

中华厨具网对任何使用或提供本网站信息的商业活动及其风险不承担任何责任。

中华厨具网存在海量企业及店铺入驻,本网站虽严格审核把关,但无法完全排除差错或疏漏。如您发现页面有任何违法/侵权、错误信息或任何其他问题,请立即向中华厨具网举报并提供有效线索,我们将根据提供举报证据的材料及时处理或移除侵权或违法信息。