分享好友 厨具导购网站首页 频道列表
#工业前“言”# 让工业减碳用上“机器学习”
2025-08-14 07:35    7144    中华厨具网

多年来,节能减碳一直是炼油厂和石化厂的重要任务目标。数据显示,2021年化工生产和炼油约占能源相关二氧化碳(co2)排放量的11%,约占所有工业能源相关二氧化碳排放总量的38%,这些碳排放可能会带来重大的健康和环境风险。

加强排放监测,及时获取识别、处理和减少排放所需的必要数据,对减轻危害影响,并最终创造更清洁、更安全的环境至关重要。然而,通过传统的监测方法,无法获取深入的数据洞察,以进行主动环境改善。

值得欣喜的是,借助最新技术,我们能够帮助运营人员优化流程并最大限度地减少碳排放。在近期的某项应用案例中,施耐德电气便为监控某真空蒸馏装置的六个碳排放源,部署了定制化的、近乎实时的机器学习模型,实现了减少碳排放的目标。

真空蒸馏装置广泛应用于化学和药物生产、原油精炼、精油和香料制造、食品加工、超纯水或脱盐水所需的热基水生产等不同行业。施耐德电气建立的机器学习模型利用aveva pi连接器实现每5分钟分析一次数据流,从而对二氧化碳排放潜在偏差的产生及时反馈。这使操作人员能够迅速做出反应,调查根本原因,并进行有针对性的调整,以优化流程并最大程度减少二氧化碳排放。

上述模型不仅适用于真空蒸馏装置,还可以迁移到不同工业流程,从而减轻对环境的影响,同时提高运营效率,助力工业迈向更加可持续的未来。

利用机器学习预测碳排放

要实现近乎实时的二氧化碳跟踪,基本步骤包括:验证运行数据、确定排放基准、利用机器学习(ml)算法来预测排放、标记不同运行状态下的事件、进行根本原因分析。在项目执行阶段,项目组专家将协助处理运行数据的验证和纠正,同时提供过程解读。随后,数据科学家专注于特征工程(feature engineering)、选择机器学习算法,并确定度量方法。

最终,机器学习算法可以根据具体的工厂运行条件来预测关键运行参数。

图1:基于真空进料和燃烧器内燃气的异常值进行在线检测

在图1(上图)中,初步识别了基于真空进料和燃烧器内燃气的异常值。异常值指与数据集中其他值存在异常距离的观测值,显示为紫色线,数值为1。正常值指数据集中的典型观测值,用数值0来表示。

然后,在剔除历史数据中的异常值后,基于清理后的数据训练ml模型,并通过ml模型每五分钟预测一次关键操作参数。在图2(下图)中,一些预测的kpi关键绩效指标与测量结果密切吻合,表明运行正常,而另一些指标则显示出明显偏差。这些操作有助于我们预见潜在问题。

图2中还监测了数据漂移,反映出统计属性随着时间的变化,并使用曲线下面积(auc)指标进行评估。其中,auc接近0.5表明漂移最小,接近1则表示漂移更显著,而js散度(jensen shannon divergence)用于衡量漂移对模型性能的影响。这些评估有助于确保模型在运行条件随时间变化时,保持准确可靠。

图2:关键运行参数的一日预测

使用机器学习查找偏差

在图3中,ml模型确定了影响目标结果的关键因素,以便对偏差进行根本原因分析。通过不断实时更新和排序重要特征,为排放的控制决策提供洞察。该数值表示某个特征的重要性,值越大,影响越大。

图中还展示了特征重要性随时间变化的平均值、最小值、最大值以及趋势。有了这些数据,我们就能及时干预,并抓住改善过程控制、性能和减排的机会。

图3:关键运行参数的预测模型与实测结果之间的偏差分析

将先进的机器学习模型与aveva pi system运营大数据管理平台相集成,可使企业最大限度地发挥运营数据的潜力。如图4所示,该集成提供了可操作的洞察,以优化装置性能,并实现数据驱动的决策。通过使用历史数据分析后的模型,企业可以进行实时预测,检测偏差和潜在的根本原因,从而提高性能,降低成本并获得竞争优势。

集成过程简便、易操作,仅需以下几步即可完成:

1. 设置虚拟机或云端环境;

2. 配置pi系统,以实现实时的数据存储和通知管理;

3. 配置python环境,并创建必要的文件;

4. 设置通用文件和流加载器的pi连接器,以便将外部源数据直接导入aveva pi system运营大数据管理平台。

所有这一切都确保了无缝、高效的集成。

图4:aveva pi system运营大数据管理平台

优化排放监测

本用例展示了一种创新的ml方法,可降低能源和化学工业对环境的影响。通过将复杂模型与aveva pi system运营大数据管理平台集成,该项目能够:

● 开发强大的ml预测模型,准确预测排放量,从而及时做出决策,避免温室气体排放超标。

● 为不同化学工艺装置生成与工艺相关的预测指标,全面了解特定工艺装置的性能,以便做出及时调整。

● 该解决方案与aveva pi vision无缝集成,提高了关键数据的可视性和可访问性。pi vision上的报告还有助于制定维护计划等事项,并使管理层能够轻松了解温室气体排放问题。

排放监测工具与aveva pi system运营大数据管理平台的集成,彰显了先进技术在应对复杂挑战和推动持续改善方面的巨大潜力,同时标志着我们向数据驱动型运营迈出坚实一步。

在6月6日即将举办的施耐德电气2024年创新峰会上,施耐德电气将以“双擎并进,数智新生”为主题,展示面向工业和能源领域的更多的创新技术与成功实践,助力工业加速迈向高效与可持续的未来!敬请期待。

(来源:施耐德电气)

以上是网络信息转载,信息真实性自行斟酌。

版权/免责声明:
一、本文图片及内容来自网络,不代表本站的观点和立场,如涉及各类版权问题请联系及时删除。
二、凡注明稿件来源的内容均为转载稿或由企业用户注册发布,本网转载出于传递更多信息的目的;如转载稿涉及版权问题,请作者联系我们,同时对于用户评论等信息,本网并不意味着赞同其观点或证实其内容的真实性。
三、转载本站原创文章请注明来源:中华厨具网

免责声明:

本站所有页面所展现的企业/商品/服务内容、商标、费用、流程、详情等信息内容均由免费注册用户自行发布或由企业经营者自行提供,可能存在所发布的信息并未获得企业所有人授权、或信息不准确、不完整的情况;本网站仅为免费注册用户提供信息发布渠道,虽严格审核把关,但无法完全排除差错或疏漏,因此,本网站不对其发布信息的真实性、准确性和合法性负责。 本网站郑重声明:对网站展现内容(信息的真实性、准确性、合法性)不承担任何法律责任。

温馨提醒:中华厨具网提醒您部分企业可能不开放加盟/投资开店,请您在加盟/投资前直接与该企业核实、确认,并以企业最终确认的为准。对于您从本网站或本网站的任何有关服务所获得的资讯、内容或广告,以及您接受或信赖任何信息所产生之风险,本网站不承担任何责任,您应自行审核风险并谨防受骗。

中华厨具网对任何使用或提供本网站信息的商业活动及其风险不承担任何责任。

中华厨具网存在海量企业及店铺入驻,本网站虽严格审核把关,但无法完全排除差错或疏漏。如您发现页面有任何违法/侵权、错误信息或任何其他问题,请立即向中华厨具网举报并提供有效线索,我们将根据提供举报证据的材料及时处理或移除侵权或违法信息。