分享好友 看资讯首页 频道列表
科学岛团队提出一种新型目标检测技术的人工智能框架
2024-05-11 23:22    6654 来源:中科院合肥研究院

近日, 中科院合肥研究院智能所先进制造技术研究中心王红强研究员团队提出了一种新型目标检测人工智能框架,为快速高精度实时在线目标识别提供了新的解决方案。相关工作发表在计算机科学及工程技术领域顶刊 expert systems with applications 上。

近年来,深度学习理论驱动了人工智能技术飞跃式发展,基于深度学习的目标检测技术在许多产业应用中取得巨大成功,其中快速实时目标检测是人工智能技术产业应用的重要需求。一直以来快速实时目标检测研究主要依赖研发轻量型神经网络模型(或边缘计算等)提高目标检测速度,但效率与精度往往不能兼顾,成为当前目标检测前沿研究与产业应用的重要挑战之一。此外,由于深度学习自身的特性, 检测精度再提升往往伴随着巨大的计算代价和时间开销, 造成在许多场景下部署和再升级瓶颈。

科研团队通过研究分析发现,基于深度学习的目标检测技术主要缺陷之一在于重复的特征提取与融合深度网络结构,产生不必要的计算代价。为此,科研人员提出一种多输入单输出目标识别框架(miso),区别于传统的多输入多输出模式,具有降低模型复杂度与推理时间开销的巨大潜力。同时,在此框架下,科研团队基于早期提出的erf检测理论,设计了感受野调节机制、残差注意力自学习机制、基于erf动态平衡抽样策略三种新的学习机制,实现了更加简洁高效地提取热点特征信息。在标准数据集上以同样29fps的速率下获得高出现有基准2.6个百分点,验证了该模型的优越性。该方法为目标检测前沿研究与产业应用提供了新的思路。

来源:中科院合肥研究院

以上是网络信息转载,信息真实性自行斟酌。

版权/免责声明:
一、本文图片及内容来自网络,不代表本站的观点和立场,如涉及各类版权问题请联系及时删除。
二、凡注明稿件来源的内容均为转载稿或由企业用户注册发布,本网转载出于传递更多信息的目的;如转载稿涉及版权问题,请作者联系我们,同时对于用户评论等信息,本网并不意味着赞同其观点或证实其内容的真实性。
三、转载本站原创文章请注明来源:中华厨具网

免责声明:

本站所有页面所展现的企业/商品/服务内容、商标、费用、流程、详情等信息内容均由免费注册用户自行发布或由企业经营者自行提供,可能存在所发布的信息并未获得企业所有人授权、或信息不准确、不完整的情况;本网站仅为免费注册用户提供信息发布渠道,虽严格审核把关,但无法完全排除差错或疏漏,因此,本网站不对其发布信息的真实性、准确性和合法性负责。 本网站郑重声明:对网站展现内容(信息的真实性、准确性、合法性)不承担任何法律责任。

温馨提醒:中华厨具网提醒您部分企业可能不开放加盟/投资开店,请您在加盟/投资前直接与该企业核实、确认,并以企业最终确认的为准。对于您从本网站或本网站的任何有关服务所获得的资讯、内容或广告,以及您接受或信赖任何信息所产生之风险,本网站不承担任何责任,您应自行审核风险并谨防受骗。

中华厨具网对任何使用或提供本网站信息的商业活动及其风险不承担任何责任。

中华厨具网存在海量企业及店铺入驻,本网站虽严格审核把关,但无法完全排除差错或疏漏。如您发现页面有任何违法/侵权、错误信息或任何其他问题,请立即向中华厨具网举报并提供有效线索,我们将根据提供举报证据的材料及时处理或移除侵权或违法信息。